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Abstract
This paper describes the efficient implementation of a model predictive control (MPC) algorithm for the management of the
pallets loaded on the transportation line of a de-manufacturing plant. In order to reduce the computational burden required
for the solution of the online optimization problem, and make it compatible with industrial applications, different control
and prediction horizons are used. In this way, the complexity of the optimization problem is reduced without significantly
affecting the performance of the plant. In addition, a detailed inspection of the transportation line configuration, and the
parallelization of the optimization and implementation tasks, allows one to obtain computational times fully comparable
to those of simple heuristic rules but with significant improvements in terms of the plant throughput. In the second part
of the paper, a fault detection procedure is developed for the identification and isolation of sensors’ and actuators’ faults.
Then, the basic MPC algorithm is modified to obtain a control scheme tolerant to instrumentation faults. Both simulation
and experimental results are reported and discussed to show the control performance and the practical applicability of the
proposed approach.

Keywords Manufacturing systems · Model-based control · Fault-tolerant control · Optimal control ·
Mixed integer linear programming

1 Introduction

The tumultuous evolution of information technology (IT)
provides growing opportunities in terms of sensing, com-
puting power, transmission of information, and networking
capabilities. In the manufacturing industry, this revolution,
going under the name Industry 4.0, requires new paradigms
for the design and implementation of automation systems
and for the development of “smart machines” and “smart
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factories,” characterized by distributed sensing, comput-
ing, control, self-diagnosis, and self-organizing properties to
enhance production flexibility, interoperability, and auton-
omy. Indeed, according to recent studies on the future of
manufacturing production systems [10], the enhancement of
productivity will be mandatory in the near future to maintain
high levels of competitiveness. However, the possibilities
offered by the new technological scenarios in terms of flexi-
bility have not been fully exploited yet, and innovative fault
detection and control algorithms are required to improve
efficiency and fault tolerance of manufacturing systems.
In this context, model predictive control, or MPC (see [4,
19, 25]), represents one of the most promising and effective
control design methods in view of its ability to cope with
multivariable problems and multiple objectives. In MPC, at
any time instant, the sequence of future control variables
over a given prediction horizon is computed by minimizing
a cost function, typically weighting the control variables and
the discrepancy between the future evolution of the system
with respect to its desired profile. In addition, constraints
on the plant and control variables can be considered to cope
with safety requirements and actuators’ limitations. Once
the optimal future control sequence has been computed, and
according to the so-called receding horizon (RH) strategy,
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only its first value is applied and the overall optimization
problem is solved again at the new time instant. Although
MPC is nowadays a standard in many process industries,
such as chemical and petrochemical, its diffusion in man-
ufacturing is still limited (see the contributions [1, 7, 9,
15, 23, 29, 31, 32]). This is due to the intrinsic discrete-
event nature of manufacturing plants, usually described by
integer (or even Boolean) variables, so that large mixed
integer linear programming (MILP) or quadratic program-
ming (MIQP) optimization problems must be solved online.
For this reason, the common approach adopted to design
the control systems of manufacturing plants relies on the
definition of heuristic rules, which do not require long
computational times for their implementation.

The potentialities and limitations of MPC applied to a
manufacturing plant have been recently analyzed in [5, 8, 9],
where MPC has been used to control the movement of the
pallets along the transportation line of the de-manufacturing
plant shown in Fig. 1. The results reported in these papers,
referred both to simulation experiments and to real-time
operations, clearly show that the control system designed
with MPC provides better results, in terms of throughput,
with respect to a set of heuristic rules specifically tailored
on the topological characteristics of the system. This is due
to the ability of MPC to exploit the inherent flexibility of
the plant provided by the multiple paths available to the
pallets on the transportation line. On the other hand, the
computational issues tend to grow dramatically with the
number of pallets on the transport line and with the length of
the adopted prediction horizon. For the practical possibility
to consider MPC as a viable design approach for control of
manufacturing plants, these limitations must be overcome
and the potentialities of MPC must be fully exploited.

Among the strengths of MPC, there is also the possibility
to easily account for structural changes due to sensors’

Fig. 1 The de-manufacturing plant

and actuators’ faults, and to design active fault-tolerant
(FT) control strategies, as discussed in [11, 18]. This
property has been widely explored in the process industry
(see for instance the application examples reported in [20,
26, 35]). More in general, many results are nowadays
available for the design of FT control algorithms for
continuous and discrete time systems (see the books [3,
34]), while only few methods have been proposed for
discrete-event systems, such as those typically considered
in manufacturing applications. In this context, an interesting
survey is reported in [12], an approach for systems modeled
as automata has been described in [22], while the system
representation in terms of Petri nets has been considered
in [28]. It is then interesting to exploit the possibility of
using MPC for the design of FT control algorithms for
discrete-event systems. To this regard, it is worth recalling
the method described in [30] and based on a description of
the system with max-plus algebra.

In view of the above reasons, and with reference to the
de-manufacturing plant of Fig. 1, the aim of this paper is
twofold:

(1) The first goal is to describe an efficient implementation
of MPC useful to reduce the computational load. The
main idea is to resort to the so-called control horizon,
widely used in classical MPC applications. Specifically,
the MPC algorithm is implemented by optimizing
the future control variables over a control horizon
shorter than the prediction horizon and assuming that
heuristic rules are used from the end of the control
horizon onwards. This strategy, previously partially
described in [6], allows to significantly reduce the
number of optimization variables to be computed
through the solution of a MILP problem, while still
considering long prediction horizons, often required to
achieve satisfactory performance. Notably, since the
RH approach is adopted, the heuristic rules are never
applied in practice, and at any time instant, the control
action is given by the solution of the stated optimization
problem.

(2) The second goal is to fully take advantage of the
flexibility provided by MPC to design a control
system tolerant to the maximum possible extent and to
actuators’ and sensors’ faults. A simple fault detection
procedure is developed, and the reconfiguration of the
control system is obtained by redefining, in case of
faults, the constraints on the control variables in the
MPC problem.

The paper is organized as follows. The considered plant and
the overall control architecture are described in Section 2.
In Section 3, the model of the plant is briefly summarized
(the reader is referred to [5] for a detailed description of
the model), and the proposed MPC algorithm with control
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horizon is presented. The results of simulation experiments
are discussed to compare, in terms of computational times
and machined pallets, the performance of the proposed
MPC algorithm to those of the standard MPC developed
in [9]. Section 4 first describes the algorithm developed
for the identification and isolation of faults of actuators
and sensors. Then, in case of faults, it is described how to
modify the MPC algorithm to guarantee fault tolerance, and
some experimental results are discussed. Finally, Section 5
closes the paper with some conclusions and possible future
developments.

2 The de-manufacturing plant and the
hierarchical control structure

2.1 The plant

The de-manufacturing plant has been designed for testing,
repairing, or discharging electronic boards. Its main
components are:

– A transportation line, made by fifteen transport modules
Ti (i = 1, . . . , 15) connected together according to a
specific meshed configuration. On a transport module,
up to three pallets can lay in three adjacent positions,
called buffer zones BZj (j = 1, 2, 3);

– Machine M1: a load/unload robot cell that either loads
the electronic board on a pallet, which is then placed
on the adjacent transport module, or unloads it from the
pallet;

– Machine M2: a testing machine that tests the board and
identifies its failure mode;

– Machine M3: a reworking machine that machines the
board to be repaired;

– Machine M4: a discharge machine that discharges the
nonrepairable boards to be destroyed from the pallet.

A sketch of the plant is shown in Fig. 2, while a detailed
description of its devices is reported in [5, 8, 9]. The
sequence of operations to be performed on each board is as
follows:

1. The board is loaded on the pallet by M1;
2. The transport line moves the pallet to M2 where the

board is tested and its failure mode is identified;
3. The pallet with the board is moved to M3 where the

failure is repaired, if possible;
4. The pallet is moved back to M2 and the test is repeated.

If the board is properly working, it is sent back to
M1 where it is unloaded from the pallet and stored
in the warehouse; otherwise, it is sent to M4 where it
is discharged from the pallet and destroyed. Then, the
pallet is ready to load a new board to be tested.

Fig. 2 Structure of the de-manufacturing plant

2.2 The control structure

The fault-tolerant control system has been designed
according to the hierarchical architecture shown in Fig. 3.
The higher layer receives from the intermediate one the state
of the system, i.e., the position of the pallets on the transport
line, the target machines for the electronic boards loaded on
the pallets, and the state of actuators and sensors (safe or
fault). Then, based on the model of the system, it computes
with MPC the optimal control sequence over the prediction
horizon and sends it to the lower layers. If a fault of the
instrumentation has been detected by the intermediate layer,
the MPC algorithm is reconfigured to compute, if possible,
a feasible solution; otherwise, the system is stopped.

The intermediate layer transforms the commands pro-
vided by the higher layer into sequences to be sent to the
programmable logic controllers (PLCs) at the lower layer. In
addition, based on the measurements and information pro-
vided by the PLCs, it runs the fault detection algorithm to
monitor the status of actuators and sensors.

Finally, the PLCs at the lower layer produce the
commands to the motors of the transport modules,
acquire the sensors’ signals, and transmit these information
upwards.

The software environments used at the higher layer are
MATLAB, YALMIP, and CPLEX (see [13, 16]), while the
intermediate layer has been implemented with ISaGRAPH
(see [14]).

3MPC of the de-manufacturing plant

An abstract model has first been developed by describing
the transport line and the machines as a directed graph (see
Fig. 4), where the nodes (filled with the gray color) are
associated with the buffer zones (also identified with the
gray color in the transport line structure showed in Fig. 2)
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Fig. 3 Hierarchical control
architecture

or with the machines, while the oriented arcs represent
the admissible paths for the pallets. The commands ui,j ,
i, j = 1, . . . , 35, associated with the arcs, allow moving the
pallet from node i to node j . Starting from the graph rep-
resentation of Fig. 4, in [9], a set of heuristic rules for the
movement of the pallets along the transport line have been
defined. These rules are mainly based on the predefinition
both of specific paths connecting the machines and traffic
lights to avoid collisions. However, their use prevents one
from fully taking advantage of the available degrees of free-
dom of the plant. For this reason, an optimization algorithm
based on MPC has been developed.

3.1 MPC algorithm

For the design of the MPC law, an analytic model of
the pallet movements, machines, and logical constraints
expressed with the rules of propositional calculus, has been
derived in [9]. For the sake of conciseness, this model is
not reported here; it suffices to say that it takes the form
of a discrete-event MLD (mixed logical dynamical) model
(see [2, 17, 24, 33]).

In this model, the state x ∈ I
82 is a vector of integer

states, including the position and the target of the pallets on
the transport line, the distance from their own target, and

Fig. 4 Directed graph
representation of the plant
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the working state of the machines; the input u ∈ I
51 is a

vector of Boolean variables ui,j ; and the output y ∈ I
35 is

a vector of integer elements, coinciding with the subset of
states describing the distance of the pallet from its target
machine. In addition, two vectors z and δ of continuous
and integer auxiliary variables are required to implement the
MLD system. Note that the dimension of the model is quite
large and represents a very significant benchmark for the
implementation of MPC.

Now let the positive integers NRH and Nc, 0 < Nc ≤
NRH, be the prediction and control horizons, respectively,
define by U(k) = [u(k)′ . . . u(k + Nc − 1)′]′, the vector
of future control moves to be optimized, and assume that
from the end of the control horizon onwards, the heuristic
rules are applied. Note that the use of a control horizon
Nc � NRH allows to significantly reduce the number
of the optimization variables so that also large MILP
optimization problems can be considered and solved with
reduced computational times (see the results reported in
Section 3.2).

In view of the above considerations, the optimization
problem to be solved at any k is (see [9])

min
U(k)

NRH∑

h=1

J̄ (k + h) (1)

under specific constraints and with

J̄ (k + h) =

=
35∑

i=1

γi(Γi(k + h))

︸ ︷︷ ︸
(a)

+
35∑

i=32

qxixi3(k + h)

︸ ︷︷ ︸
(b)

+

+
31∑

i=1

qηi
ηi(k + h)

︸ ︷︷ ︸
(c)

+
∑

(i,j)∈Iu

qui,j ui,j (k + h − 1)

︸ ︷︷ ︸
(d)

+

+
∑

(m,r,i,j)∈Ψ

λm,rσm(k + h − 1)ui,j (k + h − 1)

︸ ︷︷ ︸
(e)

(2)

The terms in (2) have the following meaning:

(a) Penalizes the distance of the pallets from their target
machines. Γi is the status of node i (with/without a
pallet to be moved to a given target). γi(·) is a function
representing the minimal distance from the node i to
the target machine of the loaded pallet;

(b) Penalizes the permanence of manufactured pallets
inside the machines. xi3 is the internal status of
machine i (equal to 1 if the machine has completed its
operations, and 0 otherwise);

(c) Penalizes the permanence of the pallets on the
transport line. ηi is a counter of the permanence of a
pallet in node i;

(d) Penalizes the control actions, strictly related to the
energy spent by the actuators to move the pallets;

(e) Penalizes the permanence of the pallets in nodes
adjacent to the machines, which could easily lead to
deadlocks. Ψ is the set of the nodes involved; σm are
Boolean variables.

The coefficients qxi , qηi , qui , are λm,r are weights to
be properly tuned. The prediction horizon NRH must be
selected large enough to avoid possible deadlocks due to
conflicting paths of the pallets; moreover, it must be greater
than the minimum number of steps required by the machines
Mi to work the pallets.
In addition to using a control horizon shorter than the pre-
diction one, the optimization problem (1), (2) can be further
simplified in view of the following considerations. First, in
some nodes, the feasible paths are uniquely defined (see for
instance the ones defined by nodes N4–N7, N8–N10, and
N28–N1 in Fig. 4). In these cases, the corresponding com-
mands ui,j are not variables to be optimized and the pallets
are moved forward until they reach a position where possi-
ble conflicts can arise.
Second, the computations at the lower (actuators’ activa-
tion) and higher (MPC) layers of the control structure can
be largely parallelized by noting that MPC can start com-
puting a new optimal control sequence assuming that the
previous one is used and the pallets’ configuration is the one
predicted at the previous time. Then, a check of consistency
is performed and, if the predicted and measured configura-
tions are equal, the new computed commands are sent to the
actuators.

3.2 Simulation results

Two experiments have been carried out to compare the
performance of the MPC with control horizon against those
of the standard MPC, with Nc = NRH, in terms of (average)
computational times and number of machined pallets. In the
cost function (2), the following weights have been used:
qui,j = 0.02; qηi = 1; qxi = 10, 000; λ32,1 = λ32,2 =
λ33,2 = λ33,3 = λ34,1 = λ35,1 = 10; λ33,1 = 4 (see [9]).

Experiment 1 The number of pallets on the transport line
at k = 0 and the prediction horizon NRH have been
varied, while the initial states and the targets of the pallets
(whenever present) are:

Pallet 1 in N28 with target M4;
Pallet 2 in N29 with target M2;
Pallet 3 in N30 with target M3;
Pallet 4 in N31 with no target;

Int J Adv Manuf Technol (2019) 104:4803–4812 4807
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Table 1 Average computational time (s) per optimization step with
standard MPC (a) and with MPC and control horizon (b)

Num. pallets NRH = 5 NRH = 6 NRH = 7

(a)

3 0.32 0.87 2.62

4 0.47 1.22 3.41

5 0.59 1.29 6.70

6 1.34 6.30 56.35

7 4.17 > 100.00 > 100.00

(b)

3 0.28 0.63 1.45

4 0.39 0.91 2.12

5 0.43 1.12 4.46

6 1.12 3.66 19.13

7 2.54 > 100.00 > 100.00

Pallet 5 in N16 with target M2;
Pallet 6 in N19 with target M3;
Pallet 7 in N23 with no target.

The control horizon Nc has been set equal to 2, and 100
simulation steps have been considered.

The mean computational time of the optimization step
has been computed for the two methods. Simulations have
been stopped when the computational time exceeds 100 s1.
Table 1 summarizes the results obtained.

As expected, the optimization time depends on NRH, on
the number and the position of the pallets on the transport
line. Moreover, note that the paths followed by the pallets
with the two control algorithms are different and, in the view
of the previous considerations, the comparison between
the two control techniques can only be made in terms of
average computational time. To quantify the reduction of
computational time due to the use of a short control horizon,
the following index has been defined:

ε% = τM − τH

τM

· 100 (3)

where τM and τH are the average computational time
of standard MPC and of MPC with control horizon,
respectively. By evaluating ε% with the data reported in
Table 1, the values summarized in Table 2 show that the
reduction is in the range 13–66%.

Experiment 2 In this experiment, it has been set NRH = 6,
Nc = 2, five pallets have been loaded on the transport
line at k = 0 (in the same positions previously defined),

1Simulations run on a computer with Intel(R) Xeon(R) CPU E5-
2620 v2 @ 2.10 GHz, 16.0 GB of installed RAM, system type 64-bit
operating system, x64-based processor, Windows 8.1 Pro., MATLAB
R17a, CPLEX R12.6 (settings: Parallelmode = 0, Threads = 0).

Table 2 ε% values

Num. pallets NRH = 5 NRH = 6 NRH = 7

3 13.18 27.92 44.69

4 17.26 25.69 37.78

5 26.80 13.08 33.42

6 16.03 41.80 66.05

7 38.98 − −

and 1000 simulation steps have been considered. The
number of pallets worked by machines M1–M4 with the two
approaches (standard MPC and MPC with control horizon)
has been computed. The obtained results in terms of the
number of pallets visiting the machines are reported in
Fig. 5a, b, which clearly shows that the performance of the
two algorithms are very similar. Thus, we may conclude that
the suboptimality inherent to MPC with control horizon is
negligible.

For completeness, also the number of pallets machined
by the system controlled only with the adopted heuristic
rules has been computed. The comparison with the number
of pallets machined by MPC with control horizon is
reported in Fig. 6a, b. It is evident that MPC with control
horizon outperforms the heuristic rules, i.e., it allows to
significantly increase the throughput of the system even
with a short control horizon.

4 Fault-tolerant control

The design of a fault-tolerant control scheme is divided into
two main steps: fault detection and control reconfiguration.

Fig. 5 Machined pallets with the standard MPC and the MPC with
control horizon. M1 and M3 (a). M2 and M4 (b)

Int J Adv Manuf Technol (2019) 104:4803–48124808
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Fig. 6 Machined pallets with heuristic rules and MPC with control
horizon. M1 and M3 (a). M2 and M4 (b)

In this section, these two phases are developed for
instrumentation faults, i.e., faults of the actuators and
sensors of the transportation line. For simplicity of
exposition, the description of the corresponding algorithms
have been developed under the following fundamental
assumption:

Only one permanent fault can be present in the system at
any time.

However, both for sensors’ and actuators’ faults, such
assumption can be partially removed, as extensively
discussed in [21].

4.1 Fault detection

The line supervisor placed at the intermediate layer of
the control hierarchy and implementing the fault detection
algorithm is based on the graph representation of Fig. 4. The
status of this graph model, in terms of position of the pallets
on the transport line, is used by MPC to compute the future
control action.
The command uij to move a pallet from buffer zone i (node
Ni) to the adjacent buffer zone j (node Nj ) updates the
status to the graph model and activates a motor governed
by a PLC. When the movement is completed, a proximity
sensor positioned in node j is used to acknowledge the
pallet movement and to provide a command to the PLC to
switch off the motor. The basic idea for the development of a
simple and effective fault detection method is to implement
in the PLC software a timer and to define a maximum
actuation time within which the pallet movement must be
completed. If, for any reason, the requested operation has
not been completed in the maximum actuation time, a
diagnostic flag is switched on, i.e., a Boolean variable wij ,

Fig. 7 Fault detection of a simple configuration

i, j = 1, . . . , 35, is set to one, and the fault detection
algorithm is run.

In order to describe the adopted fault detection logic,
a simple example is now discussed. Consider the three
adjacent nodes shown in Fig. 7, assume that at k the pallet
is in node A and the activation command is switched on
(uab = 1). Now assume that, due to a fault of the motor
or of the proximity sensor, the maximum actuation time is
exceeded and the motor is switched off by the PLC. This
can be due to:

– A fault of the motor so that the pallet remains in A;
– A fault of the proximity sensor in B so that the pallet has

reached B, but the proximity sensor has not detected its
movement.

As a consequence, the Boolean variable wab is set to one.
In any case, the line supervisor updates its status as if the
operation was terminated correctly and transmits it to the
MPC algorithm which, at k + 1, activates the command to
move the pallet from B to C (ubc = 1). Two cases are in
order:

– If the pallet was not in B at k + 1, the maximum
actuation time is again exceeded, the system diagnoses
a fault of the motor, and setswbc = 1. In this case, it can
be concluded that the motor associated to the command
uab = 1 is in fault;

– If the pallet was in B at k + 1, but it was not detected,
the new command is completed within the maximum
actuation time, the pallet reaches C, its presence is
acknowledged, and the boolean variable wbc remains
null. In this case, it can be concluded that the proximity
sensor in B is in fault.

In summary, the corresponding matrix of residuals is
reported in Table 3, and since its rows, i.e., the signatures of
the faults, are different, the fault detection procedure can be
completed.

Table 3 Matrix of residuals

wab wbc

Actuator fault 1 1

Sensor fault 1 0

Int J Adv Manuf Technol (2019) 104:4803–4812 4809
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This simple logic has been extended to all the nodes of
the graph of Fig. 4 so that all the motors and proximity
sensors have been monitored, and once a fault has been
isolated, the information on its characteristics, together with
the real status of the pallets on the transport line, is sent to
the MPC algorithm for its reconfiguration.

4.2 Control reconfiguration

If a sensor fault has been identified by the fault detection
logic, no action is required to recover the proper behavior
of the MPC algorithm. In fact, MPC relies on the status of
the transport line provided by the line supervisor running
at the intermediate layer. As discussed in the previous
Section 4.1, this status is updated by assuming that the
control commands computed by MPC are always activated
so that the estimated position of the pallets is correct and
the line supervisor acts as a virtual sensor. In this case,
the information provided by the fault detection algorithm is
used only as a warning for the plant operators.
On the contrary, some actuators’ faults are critical, since
they prevent the movement of the pallets from a machine
to another along the paths with the actuator in fault. As an
example, consider the actuators needed to move the pallets
from the load machineM1 to the other machines and, among
them, the actuators associated with the control commands
u45, u56, and u67: it is apparent that the fault of just one
of them is such that the pallets loaded by M1 cannot reach
their target machines. Therefore, once one of these faults
occurs, the plant must be stopped until the motor in fault is
repaired.

In view of these considerations, a preliminary analysis
has been conducted to identify the critical actuators.
Specifically, the following algorithm has been implemented:

1. The fundamental links among the machines, which
must be guaranteed to be available for the plant
operation, have been identified. These six links are
shown in Fig. 8. For each one of them, all the possible
paths connecting the source machine to destination one
have been computed with a best-first search approach
(see [27]).

2. The actuator associated with the command uij is critical
if it belongs to all the paths of at least one of the
fundamental links.

In run time, if the fault of a critical actuator is detected,
the plant must be stopped and the functionality of the
actuator must be restored immediately. In fact, in this
case, the proper functioning of the actuator is mandatory
to guarantee that at least one save path exists in each
one of the fundamental links depicted in Fig. 8. On the
contrary, if the actuator in fault is a noncritical one, in
view of the previous analysis, it is known that at least

Fig. 8 Fundamental links among the machines

one safe path still exists for each one of the fundamental
links. Therefore, the MPC algorithm can be used to find
the optimal control sequence simply by adding to the
optimization problem the constraint that the faulty actuator
is unavailable. Assuming that the actuator in fault is the one
moving the pallet from node i to node j , this corresponds to
include the constraint uij = 0 in the problem formulation
(this must be implemented by including the constraint
uij ≤ 0 in the MLD system). No other modifications are
required and the algorithm previously described can be used
as it is.

4.3 Simulation and experimental results

Many simulations and experiments on the real system have
been performed to assess the performance of the control
algorithm tolerant to faults. The results of one simulated
test case are summarized in Fig. 9. Specifically, in the
experiment, a pallet is initially placed in machine M3 and
must reach machine M1. In the absence of faults, the path
N12, N13, N17, N18, N19, N22, N23, N21, N24, N25, N26,
N27, N1 (yellow line in Fig. 9) is computed with MPC.
When a fault of the noncritical actuator associated with
the control action u18,19 occurs, the modified path N18,
N15, N16, N20, N21, N24, N25, N26, N27, N1 (red line)
is recomputed by formulating the MPC problem with the
additional constraint u18,19 = 0. Then, a sensor fault has
been forced in node N21. Since the pallet is detected in node
N24 even if it is not detected in node N21, then the low-level
controller is able to manage this failure without any effect
on the MPC control.

Concerning the experiments on the plant, both sensor and
actuator faults have been forced on the real system, a video
(Online Resource ESM 1) showing the behavior of theMPC
algorithm and its fault tolerance properties is available at the
Springer website.

Int J Adv Manuf Technol (2019) 104:4803–48124810
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Fig. 9 Paths with fault-tolerant
control

5 Conclusions

The paper has described the design of a fault-tolerant
control scheme based onMPC for a de-manufacturing plant.
The goal of this activity was to prove that advanced control
methods can be used also in manufacturing systems, where
their solution can be made difficult due to the mixed integer
nature of the optimization problem to be solved online.
In this regard, in the considered test case, not only the
potentialities of MPC in terms of plant efficiency have been
proven, but it has also been possible to use its flexibility
for the design of a fault-tolerant control algorithm. This has
been possible due to the fault detection method specifically
developed for the plant. As a side effect of the work reported
in the paper, the study provides clear indications on how
to modify the plant layout to reduce the number of critical
actuators and to enhance the fault tolerance properties of the
system.
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